Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38568153

RESUMO

OBJECTIVE: Obesity has become a major risk of global public health. SMEK1 is also known as a regulatory subunit of protein phosphatase 4 (PP4). Both PP4 and SMEK1 have been clarified many metabolic functions, including regulating the hepatic gluconeogenesis and glucose transporter gene expression in yeast. Whether SMEK1 participates in obesity and the broader metabolic role in mammals is unknown. Thus we investigated the function of SMEK1 in white adipose tissue and glucose uptake. METHODS: GWAS/GEPIA/GEO database was used to analyze the correlation between SMEK1 and metabolic phenotypes/lipid metabolism related genes/obesity. Smek1 KO mice were generated to identify the role of SMEK1 in obesity and glucose homeostasis. Cell culture and differentiation of SVFs and 3T3-L1 were used to determine the mechanism. 2-NBDG was used to measure the glucose uptake. Compound C was used to confirm the role of AMPK. RESULTS: We elucidated that SMEK1 was correlated to obesity and adipogenesis. Smek1 deletion enhanced adipogenesis in both SVFs and 3T3-L1. Smek1 KO protected mice from obesity, had protective effects on metabolic disorders including insulin resistance and inflammation. Smek1 KO mice have lower level of fasting serum glucose, we found that SMEK1 ablation promoted glucose uptake by increased p-AMPKα(T172) and the transcription of Glut4, when the effect on AMPK-regulated glucose uptake was due to the PP4 catalytic subunits (PPP4C). CONCLUSION: Our findings reveal a novel role of SMEK1 in obesity and glucose homeostasis, providing a potential new therapeutic target for obesity and metabolic dysfunction.

2.
Poult Sci ; 103(6): 103725, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38603933

RESUMO

Since 2012, there has been a noticeable upward trend in the global incidence of inclusion body hepatitis (IBH) cases, leading to substantial economic losses in the poultry industry. In response to this trend, the current study aimed to investigate the phylogenetic information, genetic mutations, and pathogenicity of the highly pathogenic fowl adenovirus (FAdV) strain HN1472, which was isolated from liver samples obtained from a laying flock affected by IBH. This investigation was carried out using 1-day-old specific pathogen-free (SPF) chickens. Recombination and phylogenetic analyses confirmed that HN1472 is a recombinant strain derived from FAdV-8a and FAdV-8b, and exhibited significant genetic divergence in the hexon, fiber, and ORF19 genes. Notably, the phylogenetic analysis identified recombination events in these regions. Furthermore, animal experiments revealed that HN1472 is a highly pathogenic isolate, causing 80% mortality and manifesting clinical signs of IBH in SPF chickens. Furthermore, the recombinant FAdV serotype 8b (FAdV-8b) was found to be widely distributed in various tissues, with a higher concentration in the livers and gizzard tissue at 3 d postchallenge (dpc). Collectively, these findings contribute to our current understanding of the factors influencing the pathogenicity and genetic diversity of FAdV serotype 8b (FAdV-8b) in China.

3.
Int J Nanomedicine ; 19: 2691-2708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510793

RESUMO

Purpose: Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods: NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results: These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 µg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion: Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.


Assuntos
Síndromes do Olho Seco , Grafite , Polietilenos , Polipropilenos , Pontos Quânticos , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Grafite/química , Pontos Quânticos/química , Nitrogênio/química , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Poloxâmero , Síndromes do Olho Seco/tratamento farmacológico , Inflamação , Soluções Oftálmicas , Peptídeos
4.
Int Arch Allergy Immunol ; : 1-11, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432211

RESUMO

INTRODUCTION: Clinical management of asthma remains as a prevalent challenge. Monotropein (MON) is a naturally occurring cyclic enol ether terpene glycoside with medical application potential. This study aims to evaluate the potential therapeutic effects of MON in the mouse model of chronic asthma. METHODS: An ovalbumin (OVA)-induced asthmatic mouse model was established to evaluate the therapeutic effect of MON at different doses (20, 40, and 80 mg/kg). The potential involvement of protein kinase B (AKT)/nuclear factor kappa B (NF-κB) pathway in the effect of MON was investigated by the administration of an AKT activator SC79. Histological changes in pulmonary tissues were examined by hematoxylin and eosin staining. The profiles of inflammatory cytokines (interleukin [IL]-4, IL-5, IL-13, and tumor necrosis factor [TNF]-α) in bronchoalveolar lavage fluid (BALF), and OVA-specific IgE in blood samples were analyzed by enzyme-linked immunosorbent assay (ELISA). The oxidative stress in the lung tissues was determined by measuring malondialdehyde level. The phosphorylation activation of AKT and NF-κB was examined by immunoblotting in the lung tissues. RESULTS: MON treatment suppressed the infiltration of inflammatory cells in the airways of OVA-induced asthma mice and reduced the thickness of the bronchial wall and smooth muscle layer in a dose-dependent manner. MON treatment also reduced the levels of OVA-specific IgE in serum and cytokines in BALF in asthma-induced mice, and attenuated the oxidative stress in the lung tissues. OVA induced the phosphorylation of AKT and NF-κB proteins in the lung tissues of asthmatic mice, which was significantly suppressed by MON treatment. The co-administration of AKT activator SC79 impaired the therapeutic effect of MON on asthma-induced mice. CONCLUSION: Our data demonstrated the potential therapeutic effect of MON on asthmatic mouse model, suggesting that MON attenuated the inflammatory and oxidative damages in ling tissues by dampening the AKT/NF-κB signaling pathway.

5.
Front Endocrinol (Lausanne) ; 15: 1294819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495794

RESUMO

Background: Reducing the occurrence of diabetes is considered a primary criterion for evaluating the effectiveness of interventions for prediabetes. There is existing evidence that early lifestyle-based interventions can significantly decrease the incidence of diabetes. However, whether effective interventions can reduce long-term outcomes in patients, including all-cause mortality, cardiovascular risks, and the occurrence of microvascular complications, which are the most concerning issues for both patients and clinicians, remains a subject of inconsistent research findings. And there is no direct evidence to answer whether effective intervention has long-term benefits for prediabetic patients. Therefore, we conducted a systematic review and meta-analysis to assess the relationship between early effective intervention and macrovascular and microvascular complications in prediabetic patients. Methods: PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched for the randomized controlled trials of lifestyle or/and drugs intervention in prediabetes from inception to 2023.9.15. Two investigators independently reviewed the included studies and extracted relevant data. Random or fixed effects model meta-analysis to derive overall relative risk (RR) with 95% CI for all-cause mortality, cardiovascular events, and microvascular complications. Results: As of September 15, 2023, a total of 7 effective intervention studies were included, comprising 26 articles out of 25,671 articles. These studies involved 26,389 patients with a total follow-up duration of 178,038.6 person-years. The results indicate that effective intervention can significantly reduce all-cause mortality in prediabetic patients without a history of cardiovascular disease by 17% (RR 0.83, 95% CI 0.70-0.98). Additionally, effective intervention reduced the incidence of retinopathy by 38% (RR 0.62, 95% CI 0.70-0.98). Furthermore, the study results suggest that women and younger individuals have lower all-cause mortality and cardiovascular mortality. Subsequently, we conducted an in-depth analysis of patients without a history of cardiovascular disease. The results revealed that prediabetic patients with a 10-year cardiovascular risk >10% experienced more significant benefits in terms of all-cause mortality (P=0.01). When comparing the results of all-cause mortality and cardiovascular mortality from the Da Qing Diabetes Prevention Outcome Study longitudinally, it was evident that the duration of follow-up is a key factor influencing long-term benefits. In other words, the beneficial effects become more pronounced as the intervention duration reaches a certain threshold. Conclusion: Early effective intervention, which significantly reduces the incidence of diabetes, can effectively lower all-cause mortality in prediabetic patients without a history of cardiovascular disease (especially those with a 10-year cardiovascular risk >10%), with women and younger individuals benefiting more significantly. Additionally, the duration of follow-up is a key factor influencing outcomes. The conclusions of this study can provide evidence-based guidance for the clinical treatment of prediabetic patients to prevent cardiovascular and microvascular complications. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42020160985.


Assuntos
Doenças Cardiovasculares , Mortalidade , Estado Pré-Diabético , Humanos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/prevenção & controle , Incidência , Estado Pré-Diabético/complicações , Estado Pré-Diabético/terapia , Risco
6.
Cell Death Differ ; 31(3): 360-377, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38365970

RESUMO

Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Movimento Celular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Via de Sinalização Wnt , Transição Epitelial-Mesenquimal , Proteínas de Ligação a RNA/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1336123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419958

RESUMO

Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Retinopatia Diabética , Falência Renal Crônica , Adulto , Humanos , Nefropatias Diabéticas/patologia , Retinopatia Diabética/patologia , Rim/patologia
8.
Nat Comput Sci ; 4(2): 128-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374363

RESUMO

Identifying true DNA cellular barcodes among polymerase chain reaction and sequencing errors is challenging. Current tools are restricted in the diversity of barcode types supported or the analysis strategies implemented. As such, there is a need for more versatile and efficient tools for barcode extraction, as well as for tools to investigate which factors impact barcode detection and which filtering strategies to best apply. Here we introduce the package CellBarcode and its barcode simulation kit, CellBarcodeSim, that allows efficient and versatile barcode extraction and filtering for a range of barcode types from bulk or single-cell sequencing data using a variety of filtering strategies. Using the barcode simulation kit and biological data, we explore the technical and biological factors influencing barcode identification and provide a decision tree on how to optimize barcode identification for different barcode settings. We believe that CellBarcode and CellBarcodeSim have the capability to enhance the reproducibility and interpretation of barcode results across studies.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Reação em Cadeia da Polimerase
9.
Cell Death Dis ; 15(2): 121, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331954

RESUMO

Mutation in CUL4B gene is one of the most common causes for X-linked intellectual disability (XLID). CUL4B is the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complex. While the roles of CUL4B in cancer progression and some developmental processes like adipogenesis, osteogenesis, and spermatogenesis have been studied, the mechanisms underlying the neurological disorders in patients with CUL4B mutations are poorly understood. Here, using 2D neuronal culture and cerebral organoids generated from the patient-derived induced pluripotent stem cells and their isogenic controls, we demonstrate that CUL4B is required to prevent premature cell cycle exit and precocious neuronal differentiation of neural progenitor cells. Moreover, loss-of-function mutations of CUL4B lead to increased synapse formation and enhanced neuronal excitability. Mechanistically, CRL4B complex represses transcription of PPP2R2B and PPP2R2C genes, which encode two isoforms of the regulatory subunit of protein phosphatase 2 A (PP2A) complex, through catalyzing monoubiquitination of H2AK119 in their promoter regions. CUL4B mutations result in upregulated PP2A activity, which causes inhibition of AKT and ERK, leading to premature cell cycle exit. Activation of AKT and ERK or inhibition of PP2A activity in CUL4B mutant organoids rescues the neurogenesis defect. Our work unveils an essential role of CUL4B in human cortical development.


Assuntos
Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Fosfatase 2/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Mutação/genética , Neurogênese/genética
10.
Sci Rep ; 14(1): 938, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195977

RESUMO

Treatment for anterior cruciate ligament (ACL) tears depends on the condition of the ligament. We aimed to identify different tear statuses from preoperative MRI using deep learning-based radiomics with sex and age. We reviewed 862 patients with preoperative MRI scans reflecting ACL status from Hunan Provincial People's Hospital. Based on sagittal proton density-weighted images, a fully automated approach was developed that consisted of a deep learning model for segmenting ACL tissue (ACL-DNet) and a deep learning-based recognizer for ligament status classification (ACL-SNet). The efficacy of the proposed approach was evaluated by using the sensitivity, specificity and area under the receiver operating characteristic curve (AUC) and compared with that of a group of three orthopedists in the holdout test set. The ACL-DNet model yielded a Dice coefficient of 98% ± 6% on the MRI datasets. Our proposed classification model yielded a sensitivity of 97% and a specificity of 97%. In comparison, the sensitivity of alternative models ranged from 84 to 90%, while the specificity was between 86 and 92%. The AUC of the ACL-SNet model was 99%, demonstrating high overall diagnostic accuracy. The diagnostic performance of the clinical experts as reflected in the AUC was 96%, 92% and 88%, respectively. The fully automated model shows potential as a highly reliable and reproducible tool that allows orthopedists to noninvasively identify the ACL status and may aid in optimizing different techniques, such as ACL remnant preservation, for ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Aprendizado Profundo , Humanos , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Reconstrução do Ligamento Cruzado Anterior , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética
11.
Sci Total Environ ; 913: 169759, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171462

RESUMO

Microplastics have emerged as a concerning contaminant in drinking water sources, potentially interacting with pathogenic microorganisms and affecting the disinfection processes. In this study, MS2 was selected as an alternative for the human enteric virus. The influence of microplastics polyvinylchloride (MPs-PVC) on ultraviolet light emitting diode (UV-LED) inactivation of MS2 was investigated under various water chemistry conditions, such as MPs-PVC concentration, pH, salinity, and humic acid concentration. The results revealed that higher concentrations of MPs-PVC led to the reduced inactivation of MS2 by decreased UV transmittance, hindering the disinfection process. Additionally, the inactivation efficiency of MS2 in the presence of MPs-PVC was influenced by pH, and acidic solution (pH at 4, 5, and 6) exhibited higher efficiency compared to alkaline solution (pH at 8 and 9) and neutral solution (pH at 7). The low Na+ concentrations (0-50 mM) had a noticeable effect on MS2 inaction efficiency in the presence of MPs-PVC, while the addition of Ca2+ posed an insignificant effect due to the preferential interaction with MPs-PVC. Furthermore, the inactivation rate of MS2 initially increased and then decreased with increasing the concentration of humic acid, which was significantly different without MPs-PVC. These findings shed light on the complex interactions between MPs-PVC and MS2 in the UV-LED disinfection process under various water-quality parameters, contributing to drinking water safety and treatment.


Assuntos
Água Potável , Microplásticos , Humanos , Plásticos , Levivirus , Raios Ultravioleta , Substâncias Húmicas , Cloreto de Polivinila
12.
Foodborne Pathog Dis ; 21(1): 61-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856143

RESUMO

Cronobacter sakazakii is an opportunistic foodborne pathogen that mainly infects infants and immunocompromised people, with a high mortality rate. However, the efficient transformation method of this bacterium has not been systematically reported. In this study, we developed a fast and efficient transformation method for C. sakazakii by cold sucrose treatment. Compared with CaCl2 or glycerol treatment, the transformation efficiency of this method is significantly high when bacteria were cultured overnight at 42°C before cold sucrose treatment. Furthermore, applying this method, we successfully knocked out the pppA gene by direct electroporation. Collectively, our study provides a simple, time-saving, and efficient method for competent cell preparation of C. sakazakii, which is conducive to the further research of C. sakazakii.


Assuntos
Cronobacter sakazakii , Cronobacter , Lactente , Humanos , Cronobacter sakazakii/genética , Hospedeiro Imunocomprometido , Sacarose
13.
Eur J Med Res ; 28(1): 565, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053180

RESUMO

BACKGROUND: Immune dysregulation is a feature of sepsis. However, a comprehensive analysis of the immune landscapes in septic patients has not been conducted. OBJECTIVES: This study aims to explore the abundance ratios of immune cells in sepsis and investigate their clinical value. METHODS: Sepsis transcriptome data sets were downloaded from the NCBI GEO database. The immunedeconv R package was employed to analyze the abundance of immune cells in sepsis patients and calculate the ratios of different immune cell types. Differential analysis of immune cell ratios was performed using the t test. The Spearman rank correlation coefficient was utilized to find the relationships between immune cell abundance and pathways. The prognostic significance of immune cell ratios for patient survival probability was assessed using the log-rank test. In addition, differential gene expression was performed using the limma package, and gene co-expression analysis was executed using the WGCNA package. RESULTS: We found significant changes in immune cell ratios between sepsis patients and healthy controls. Some of these ratios were associated with 28-day survival. Certain pathways showed significant correlations with immune cell ratios. Notably, six immune cell ratios demonstrated discriminative ability for patients with systemic inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis, with an Area Under the Curve (AUC) larger than 0.84. Patients with a high eosinophil/B.cell.memory ratio exhibited poor survival outcomes. A total of 774 differential genes were identified in sepsis patients with a high eosinophil/B.cell.memory ratio compared to those with a low ratio. These genes were organized into seven co-expression modules associated with relevant pathways, including interferon signaling, T-cell receptor signaling, and specific granule pathways. CONCLUSIONS: Immune cell ratios eosinophil/B.cell.memory and NK.cell.activated/NK.cell.resting in sepsis patients can be utilized for disease subtyping, prognosis, and diagnosis. The proposed cell ratios may have higher prognostic values than the neutrophil-to-lymphocyte ratio (NLR).


Assuntos
Eosinófilos , Sepse , Humanos , Curva ROC , Sepse/genética , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica , Prognóstico , Células Matadoras Naturais , Estudos Retrospectivos
14.
Biotechnol Biofuels Bioprod ; 16(1): 191, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072928

RESUMO

BACKGROUND: While representing a model bacterium and one of the most used chassis in biomanufacturing, performance of Escherichia coli is often limited by severe stresses. A super-robust E. coli chassis that could efficiently tolerant multiple severe stresses is thus highly desirable. Sterols represent a featured composition that distinguishes eukaryotes from bacteria and all archaea, and play a critical role in maintaining the membrane integrity of eukaryotes. All sterols found in nature are directly synthesized from (S)-2,3-oxidosqualene. However, in E. coli, (S)-2,3-oxidosqualene is not present. RESULTS: In this study, we sought to introduce (S)-2,3-oxidosqualene into E. coli. By mining and recruiting heterologous enzymes and activation of endogenous pathway, the ability of E. coli to synthesize (S)-2,3-oxidosqualene was demonstrated. Further analysis revealed that this non-native chemical confers E. coli with a robust and stable cell membrane, consistent with a figurative analogy of wearing an "Iron Man's armor"-like suit. The obtained Iron Man E. coli (IME) exhibited improved tolerance to multiple severe stresses, including high temperature, low pH, high salt, high sugar and reactive oxygen species (ROS). In particular, the IME strain shifted its optimal growth temperature from 37 °C to 42-45 °C, which represents the most heat-resistant E. coli to the best of our knowledge. Intriguingly, this non-native chemical also improved E. coli tolerance to a variety of toxic feedstocks, inhibitory products, as well as elevated synthetic capacities of inhibitory chemicals (e.g., 3-hydroxypropionate and fatty acids) due to improved products tolerance. More importantly, the IME strain was effectively inhibited by the most commonly used antibiotics and showed no undesirable drug resistance. CONCLUSIONS: Introduction of the non-native (S)-2,3-oxidosqualene membrane lipid enabled E. coli to improve tolerance to various stresses. This study demonstrated the effectiveness of introducing eukaryotes-featured compound into bacteria for enhancing overall tolerance and chemical production.

15.
Genet Test Mol Biomarkers ; 27(12): 393-405, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156905

RESUMO

Background: There is increasing evidence that abnormal expression of microRNAs is involved in the occurrence and progression of tumors. In previous experiments, we found that the content of hsa-miR-1301-3p in tumor tissues of patients with nonsmall cell lung cancer (NSCLC) showed an obvious upward trend compared with that in normal tissues. We performed a detailed study on the impact and underlying mechanism of hsa-miR-1301-3p in NSCLC cells. Methods: The impact of hsa-miR-1301-3p on NSCLC cell proliferation, apoptosis, migration, and invasion was examined using colony formation, flow cytometry, modified Boyden chamber, and wound healing assays. Different doses of radiation were applied to NSCLC cells to investigate their sensitivity to radiotherapy. The potential target gene of hsa-miR-1301-3p was determined by dual-luciferase reporter assay and immunoblotting. Result: hsa-miR-1301-3p was upregulated in NSCLC tissues and cells. hsa-miR-1301-3p effectively promoted the rapid proliferation, migration, and invasion of NSCLC cells, while inhibiting apoptosis. It also induced radioresistance in NSCLC cells. hsa-miR-1301-3p targeted the homeodomain-only protein homeobox (HOPX) mRNA 3' untranslated region and inhibited its transcription in NSCLC cells. Exogenous HOPX overexpression antagonized the mechanism by which hsa-miR-1301-3p regulates NSCLC cell proliferation, metastasis, and apoptosis. Conclusions: hsa-miR-1301-3p plays an oncogenic role in the occurrence and development of NSCLC. By targeting HOPX, hsa-miR-1301-3p can not only promote the proliferation and metastasis of NSCLC cells, but also alleviate apoptosis and reduce radiosensitivity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tolerância a Radiação/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-37965776

RESUMO

OBJECTIVE: This study aimed to investigate changes of computed tomography pulmonary angiography (CTPA)-derived parameters in older adults with acute pulmonary embolism (APE). METHODS: According to the pulmonary artery obstruction index (PAOI), patients with APE were divided into the A1 (PAOI ≥30%, n = 57) and A2 (PAOI <30%, n = 40) groups. Participants without APE were placed in group B (n = 170). The left atrial (LA) and left ventricular (LV) parameters among the three groups were compared, and the parameter changes in the 44 patients with APE were analyzed before and after treatment. The correlation between APE severity and the parameters was analyzed using correlation analysis. RESULTS: The left-to-right diameters (LR) of LA, and LR × anteroposterior diameters (AP) of LA and LV: A1 < A2 < B; LR of LV: A1 < A2, B; AP of LA and LV: A1, A2 < B. After treatment, LR and LR × AP of the LA and LV were significantly increased in the group A1 and LR of the LV and LR × AP of the LA and LV were elevated in the group A2. Acute pulmonary embolism severity was closely associated with LR × AP (r = -0.557) and LR (r = -0.477) of LA. CONCLUSIONS: With an increase in the degree of obstruction, older adults had a smaller LA and LV. Furthermore, the LR and LR × AP values of the LA were significantly decreased. These results contribute to in-time risk stratification.

17.
Front Endocrinol (Lausanne) ; 14: 1270145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027131

RESUMO

Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Qualidade de Vida , Edema Macular/complicações , Neurônios/metabolismo , Pericitos/metabolismo
18.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895170

RESUMO

N-acetyl sugar amidotransferase (NASAT) is involved in the lipopolysaccharide (LPS) biosynthesis pathway that catalyzes the formation of the acetamido moiety (sugar-NC(=NH)CH3) on the O-chain. So far, little is known about its structural and functional properties. Here, we report the crystal structure of an N-acetyl sugar amidotransferase from Legionella pneumophila (LpNASAT) at 2.33 Å resolution. LpNASAT folds into a compact basin-shaped architecture with an unusually wide and open putative substrate-binding pocket and a conserved zinc ion-binding tetracysteine motif. The pocket contains a Rossmann-like fold with a PP-loop, suggesting that the NASAT-catalyzed amidotransfer reaction probably requires the conversion of ATP to AMP and PPi. Our data provide structural insights into the NASAT family of proteins, and allow us to possibly identify its functionally important regions.


Assuntos
Lipopolissacarídeos , Açúcares , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
19.
Nat Commun ; 14(1): 5457, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674029

RESUMO

High-quality graphene-based van der Waals superlattices are crucial for investigating physical properties and developing functional devices. However, achieving homogeneous wafer-scale graphene-based superlattices with controlled twist angles is challenging. Here, we present a flat-to-flat transfer method for fabricating wafer-scale graphene and graphene-based superlattices. The aqueous solution between graphene and substrate is removed by a two-step spinning-assisted dehydration procedure with the optimal wetting angle. Proton-assisted treatment is further used to clean graphene surfaces and interfaces, which also decouples graphene and neutralizes the doping levels. Twist angles between different layers are accurately controlled by adjusting the macroscopic stacking angle through their wafer flats. Transferred films exhibit minimal defects, homogeneous morphology, and uniform electrical properties over wafer scale. Even at room temperature, robust quantum Hall effects are observed in graphene films with centimetre-scale linewidth. Our stacking transfer method can facilitate the fabrication of graphene-based van der Waals superlattices and accelerate functional device applications.

20.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 3003-3014, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584144

RESUMO

The generation of a tau-V337M point mutation mouse model using gene editing technology can provide an animal model with fast disease progression and more severe symptoms, which facilitate the study of pathogenesis and treatment of Alzheimer's disease (AD). In this study, single guide RNAs (sgRNA) and single-stranded oligonucleotides (ssODN) were designed and synthesized in vitro. The mixture of sgRNA, Cas9 protein and ssODN was microinjected into the zygotes of C57BL/6J mice. After DNA cutting and recombination, the site homologous to human 337 valine (GTG) in exon 11 was mutated into methionine (ATG). In order to improve the efficiency of recombination, a Rad51 protein was added. The female mice mated with the nonvasectomy male mice were used as the surrogates. Subsequently, the 2-cell stage gene edited embryos were transferred into the unilateral oviduct, and the F0 tau-V337M mutation mice were obtained. Higher mutation efficiency could be obtained by adding Rad51 protein. The F0 tau-V337M point mutation mice can pass the mutation on to the F1 generation mice. In conclusion, this study successfully established the first tau-V337M mutation mouse by using Cas9, ssODN and Rad51. These results provide a new method for developing AD mice model which can be used in further research on the pathogenesis and treatment of AD.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Animais , Masculino , Feminino , Camundongos , Humanos , Sistemas CRISPR-Cas/genética , Rad51 Recombinase/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...